UNIT 8: LINEAR PREDICTION

8.1 Summary

Linear prediction is a method for signal source modelling dominant in speech signal processing and having wide application in other areas. Starting with a demonstration of the relationship between linear prediction and the general difference equation for linear systems, the unit shows how the linear prediction equations are formulated and solved. The unit then discusses the use of linear prediction for modelling the source of a signal and the signal spectrum.

When you have worked through this unit you should:
- understand how linear prediction can provide a model of a signal source
- be able to state the operational limitations of the modelling
- understand in qualitative terms how the equations are solved on a computer system
- know how and when to use linear prediction as an alternative to spectral analysis by the Fourier transform

8.2 Concepts

Nature of linear prediction

The object of linear prediction is to form a model of a linear time-invariant digital system through observation of input and output sequences. That is: to estimate a set of coefficients which will describe the behaviour of an LTI system when its design is not available to us and we cannot choose what input to present.

Specifically, linear prediction calculates a set of coefficients which provide an estimate - or a prediction - for a forthcoming output sample $y'[n]$ given knowledge of previous input ($x[]$) and/or output ($y[]$) samples:

$$y'[n] = \sum_{k=0}^{p} a_k x[n-k] - \sum_{k=1}^{q} b_k y[n-k]$$

Where a and b are called predictor coefficients. It is immediately clear that this estimate of the next output sample given the predictor coefficients and previous input and output samples is directly related to the general system difference equation we met in Unit 4. Even though we might not know the order of some LTI system, such an estimator is an inherently sensible way to model its properties.

The commonest form of linear prediction used in signal processing is one in which the a coefficients are zero, so that the output estimate is made entirely on the basis of previous output samples:
\[y'[n] = -\sum_{k=1}^{q} b_k y[n - k] \]

This is called an *all-pole* model, which may be seen by analogy with the frequency response equations of LTI systems. The use of an all pole model is motivated by a number of reasons:

(i) we often do not have access to the input sequence,
(ii) many simple signal sources are faithfully modelled by an all-pole model,
(iii) the all-pole model gives a system of equations which may be efficiently solved.

The relation of the linear predictor equation with the LTI system equation may be more readily understood by introducing a *predictor error* signal \(e[n] \), defined as the difference between the real output and the prediction:

\[e[n] = y[n] - y'[n] \]

Hence we may write:

\[y[n] = e[n] - \sum_{k=1}^{q} b_k y[n - k] \]

giving us a formulation in which the error signal takes the role of the excitation signal, and the predictor coefficients define the filter.

Solution of linear prediction equations

To estimate the predictor coefficients \(b_k \) we first observe the behaviour of the system over \(N \) samples, and set the order \(q \) of the predictor required (usually \(N \) is much greater than \(q \)). We calculate the predictor coefficients by finding values which minimise the energy in the error signal over the \(N \) samples\(^1\). This is called a *least-squares* minimisation, and leads to a system of \(q \) equations in \(q \) unknowns which may be solved to find the best fitting predictor coefficients:

\[
\sum_{k=0}^{q} \left(b_k \sum_{n=0}^{N-1} y[n - k]y[n - j] \right) = 0, \quad j = 1, 2, \ldots, q
\]

Where \(b_0 \) is taken to be 1.

There are a number of methods for finding the solution to this system of linear equations. The formulation above is sometimes known as the *covariance* formulation and is appropriate when estimating coefficients from a sample of a non-stationary signal. If instead we assume that the signal is zero outside the \(N \) sample region, we can find a simpler formulation:

\[
\sum_{k=0}^{q} \left(b_k \sum_{n=j}^{N-1} y[n]y[n - k + j] \right) = 0, \quad j = 1, 2, \ldots, q
\]

This is called the *autocorrelation* formulation, since it contains components equivalent to the autocorrelation coefficient \(r_i \) defined as:

\(^1\) This is equivalent to flattening the spectrum of the error signal.
\[r_j = \sum_{n=\infty}^{\infty} y[n]y[n-i] \]

The autocorrelation formulation of the least squares fit of the predictor coefficients produces a system of linear equations which can be represented in matrix form and solved using standard methods such as Gaussian elimination. See LPCSolve().

However the autocorrelation system of equations can be solved much more efficiently since the autocorrelation coefficients in the matrix form of the equations have a very simple and symmetric structure. This allows for a recursive solution procedure in which each predictor coefficient may be derived in turn and used to calculate the next coefficient. This is the dominant method for solving the linear prediction equations, and is usually credited to Levinson and Durbin. See LPCAutocorrelation().

Spectrum Modelling

The determination of the \(b \) coefficients from some section of signal provides us with an all-pole filter that characterises the source on the assumption that the input signal is white (i.e. has a flat spectrum). Thus the frequency response of the derived filter gives a smooth model of the signal spectrum under the predictor assumptions. See Example program 8.2.

Root Solving

It is also possible to determine the location of the individual poles that make up the linear prediction derived filter - this is useful as the poles can often be considered as being caused by resonances in the driving system. To find the poles, it is necessary to factorise the predictor polynomial, this can be performed numerically through a root-solving procedure, see FindRoots(). The location of the poles can then be interpreted in terms of the frequencies and bandwidths of the system resonances.

Bibliography

Algorithm 8.1 Linear Prediction Solution - Direct Method

Const EPSILON As Double = 0.0000000001

' Gauss-Jordan elimination on set of simultaneous equations
Private Shared Function Eliminate(ByRef mat(,) As Double, ByVal n As Integer) As Double
Dim pos As Integer ' pivot row
Dim max As Double ' maximum value in column
Dim det As Double = 1.0 ' determinant

' for each row
For i As Integer = 1 To n
 ' find pivot row from max column entry
 max = 0
 pos = 1
 For j As Integer = i To n
 If (Math.Abs(mat(j, i)) > max) Then
 max = Math.Abs(mat(j, i))
 pos = j
 End If
 Next

 ' check for column of zeros
 If (max < EPSILON) Then Return (0.0)

 ' transpose current row with pivot row
 ' and normalise diagonal element to unity
 max = mat(pos, i)
 For j As Integer = 1 To n + 1
 Dim temp As Double = mat(pos, j)
 mat(pos, j) = mat(i, j)
 mat(i, j) = temp / max
 Next

 ' keep record of determinant
 If (i <> pos) Then
 det = det * -max
 Else
 det = det * max
 End If

 ' reduce matrix by dividing through by row
 For k As Integer = 1 To n
 If (k <> i) Then
 Dim val As Double = mat(k, i)
 For j As Integer = i To n + 1
 mat(k, j) = mat(k, j) - val * mat(i, j)
 Next
 End If
 Next

End Function
' set up and solve LPC equations
Public Shared Function Solve(ByVal x As Waveform, ByVal order As Integer) As LTISystem
 ' compute autocorrelations
 Dim r(order) As Double
 Dim ltis As New LTISystem(0, order)
 Dim sum As Double
 For i As Integer = 0 To order
 sum = 0
 For k As Integer = 1 To x.Count - i
 sum += x(k) * x(k + i)
 Next
 r(i) = sum
 Next
 ' build set of linear equations
 Dim mat(order, order + 1) As Double
 For i As Integer = 1 To order
 For j As Integer = 1 To order
 mat(i, j) = r(Math.Abs(i - j))
 Next
 mat(i, order + 1) = -r(i)
 Next
 ' solve them
 If (Eliminate(mat, order) = 0) Then
 ltis.a(0) = 0.0
 Return ltis
 End If
 ' copy coefficients into LTI System
 ltis.a(0) = 1.0
 ltis.b(0) = 1.0
 For i As Integer = 1 To order
 ltis.b(i) = mat(i, order + 1)
 Next
 ' OK
 Return ltis
End Function

Algorithm 8.2 Linear Prediction Solution - Autocorrelation Method

' Find predictor coefficients from waveform by Levinson-Durbin recursion method
Public Shared Function Auto(ByVal x As Waveform, ByVal order As Integer, ByRef pe As Double) As LTISystem
 Dim r(order) As Double
 Dim ltis As New LTISystem(0, order)
 Dim sum As Double
 ' compute autocorrelations
 For i As Integer = 0 To order
 sum = 0
 For k As Integer = 1 To x.Count - i
 sum += x(k) * x(k + i)
 Next
 r(i) = sum
 Next
 ' check power in signal
 If (r(0) = 0) Then
 ' no signal !
 pe = 0
 Return ltis
 End If
End Function
compute predictor coefficients
Dim pc(order) As Double ' temporary array
pe = r(0) ' initialise error to total power
pc(0) = 1.0 ' first coefficient (b[0]) must = 1

' for each coefficient in turn
For k As Integer = 1 To order
 ' find next coeff from pc[] and r[]
 sum = 0
 For i As Integer = 1 To k
 sum -= pc(k - i) * r(i)
 Next
 pc(k) = sum / pe

 ' perform recursion on pc[]
 For i As Integer = 1 To k \ 2
 Dim pci As Double = pc(i) + pc(k) * pc(k - i)
 Dim pcki As Double = pc(k - i) + pc(k) * pc(i)
 pc(i) = pci
 pc(k - i) = pcki
 Next

 ' calculate residual error
 pe = pe * (1.0 - pc(k) * pc(k))
 If (pe <= 0) Then
 ' no power left in signal!
 Return ltis
 End If
Next

' copy coefficients into LTI System
ltis.a(0) = 1.0
ltis.b(0) = 1.0
For i As Integer = 1 To order
 ltis.b(i) = pc(i)
Next

' return OK
Return ltis
End Function

Algorithm 8.4 Root Solving the Predictor Polynomial

Public Class Roots
 Private Const ROUND_ERROR As Double = 0.00000006
 Private Const IM_RANGE As Double = 0.0000001

 ' Find single root using Laguerre's method
 Private Shared Function Lagmethod(ByVal p() As Complex, ByVal order As Integer, ByVal x0 As Complex)
 ' iteratively improve initial estimate x0
 For iter As Integer = 1 To 100
 ' evaluate polynomial and its first and second derivatives at x0
 Dim x As Complex = x0
 Dim xp As Complex = 1
 Dim p0 As Complex = p(0) + p(1) * x
 Dim p1 As Complex = p(1) + x
 Dim p2 As Complex = 0
 For i As Integer = 2 To order
 p0 += p(i) * xp * x * x
 p1 += i * p(i) * xp * x
 p2 += i * (i - 1) * p(i) * xp * x
 xp = xp * x
 Next
 ' use Laguerre's iteration to improve estimate
Dim G As Complex = p1 / p0
Dim H As Complex = G * G - p2 / p0
Dim a1 As Complex = order / (G + Complex.Sqrt((order - 1) * (order * H - G * G))"
Dim a2 As Complex = order / (G - Complex.Sqrt((order - 1) * (order * H - G * G))"
If (a1.Mag < a2.Mag) Then
 x0 = x - a1
 If (a1.Mag < x0.Mag * ROUND_ERROR) Then Return (x0)
Else
 x0 = x - a2
 If (a2.Mag < x0.Mag * ROUND_ERROR) Then Return (x0)
End If
Next
Return (x0)
End Function

''' Solve a real polynomial of order N into N complex roots
Public Shared Function FindRoots(ByVal ap() As Double, ByVal m As Integer) As Complex()
 Dim p(m) As Complex
 Dim rroots(m) As Complex
 ' copy polynomial coefficients into complex array
 For j As Integer = 0 To m
 p(j) = ap(j)
 Next
 ' find each root in turn
 For j As Integer = m To 1 Step -1
 ' find a root, using origin as initial estimate
 Dim x As Complex = Lagmethod(p, j, New Complex(0, 0))
 ' eliminate very small imaginary parts
 If Math.Abs(x.Imag) <= (IM_RANGE * Math.Abs(x.Real)) Then x.Imag = 0.0
 rroots(j) = x
 ' divide polynomial through by found root
 Dim bp As Complex = p(j)
 For k As Integer = j - 1 To 0 Step -1
 Dim c As Complex = p(k)
 p(k) = bp
 bp = c + x * bp
 Next
 Next
 ' sort roots by increasing Arg
 For j As Integer = 2 To m
 Dim x As Complex = rroots(j)
 Dim i As Integer = j
 While (i > 1) AndAlso (x.Arg < rroots(i - 1).Arg)
 rroots(i) = rroots(i - 1)
 i = i - 1
 End While
 rroots(i) = x
 Next
 Return rroots
End Function
End Class
Example Programs

Example 8.1 Demonstration of Linear Prediction

```vbnet
Imports BasicDSP
Module Module1
    Const WINDOWSIZE As Integer = 32
    Const NCOEFF As Integer = 4
    Const C1 As Double = 0.16, C2 As Double = -0.12, C3 As Double = 0.08, C4 As Double = -0.04

    Sub Main()
        Dim iwin As New Waveform(WINDOWSIZE, 1)
        ' make a test signal from recursive filter
        iwin(1) = 0.75          ' put in pulse of power sqr(0.75)
        For i As Integer = 2 To WINDOWSIZE
            ' exploits bad index capability
            iwin(i) = -C1 * iwin(i - 1) - C2 * iwin(i - 2) - C3 * iwin(i - 3) - C4 * iwin(i - 4)
        Next
        ' do LPC analysis
        Dim osys As LTISystem = LPC.Solve(iwin, NCOEFF)
        If (osys.a(0) = 0) Then
            Console.WriteLine("Analysis failed")
        Else
            Console.WriteLine("Predictor Coefficients:")
            For i As Integer = 1 To NCOEFF
                Console.Write("Coeff{0}={1:F2} ", i, osys.b(i))
            Next
            Console.WriteLine()
        End If
        ' do LPC analysis
        Dim pe As Double
        osys = LPC.Auto(iwin, NCOEFF, pe)
        If (osys.a(0) = 0) Then
            Console.WriteLine("Analysis failed")
        Else
            Console.WriteLine("Predictor Coefficients:")
            For i As Integer = 1 To NCOEFF
                Console.Write("Coeff{0}={1:F2} ", i, osys.b(i))
            Next
            Console.WriteLine(" residual={0:F4}", pe)
        End If
        Console.ReadLine()
    End Sub
End Module
```

Console Output:

```
Predictor Coefficients:
Coeff1=0.16 Coeff2=-0.12 Coeff3=0.08 Coeff4=-0.04
Predictor Coefficients:
Coeff1=0.16 Coeff2=-0.12 Coeff3=0.08 Coeff4=-0.04 residual=0.5625
```
Example 8.2 Linear Prediction Spectrum and Root Solving to find formants

```vbnet
Imports BasicDSP
Public Class Formants

Private Sub Formants_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load
    ' load a piece of test signal
    Dim isig As NewSignal("c:/sfs/demo/six.wav")
    Dim x As Waveform = isig.Cut(24120, 1810).Float

    ' plot the input waveform
    Dim gr As New Graph(Me.CreateGraphics, zgc, 3, 1)
    gr.PlotWaveform(1, x, "Input Signal")

    ' calculate a spectrum of the windowed signal
    Dim y As Spectrum = DFT.ComplexDFT(Window.Hamming(x.Complex))

    ' plot the lower 5000Hz of the spectrum
    Dim hz5000 As Integer = 5000 * y.Count / y.Rate
    gr.PlotDbSpectrum(2, y.Cut(0, hz5000), "Log Magnitude Spectrum")

    ' calculate an LP model
    Dim pe As Double
    Dim np As Integer = x.Rate / 1000
    Dim pc As LTISystem = LPC.Auto(x, np, pe)

    ' calculate frequency response
    Dim r As New Spectrum(500, 5000)
    For i As Integer = 0 To 499
        r(i) = pc.Response((5000 * i / 500) / x.Rate)
    Next

    ' plot frequency response
    gr.PlotDbSpectrum(3, r, "LPC Spectrum")

    ' get roots of filter polynomial
    Dim rroots() As Complex = Roots.FindRoots(pc.b, np)

    ' display frequencies
    Dim msg As String = "Formants=
    Dim f As Integer = Math.Atan2(rroots(i).Imag, rroots(i).Real) * x.Rate / (2 * Math.PI)
    If (f > 0) And (f < 5000) Then
        msg = msg & " " & f
    End If
    Next

    txtStatus.Text = msg & " Hz"
End Sub
End Class
```

Exercise

8.1 Generate a whispered vowel by passing noise through 3 resonators at say 500, 1500 and 2500Hz (with 100Hz bandwidths) and then use LPC to estimate the frequencies of the resonators from the signal. Display the signal, the FFT spectrum and the LPC spectrum as in Example 8.2. How might you find the exact locations of the peaks in the LPC spectrum?