
UCL/PALS/BASICDSP/05FOURIER/100103/1

UNIT 5:
DISCRETE FOURIER
TRANSFORM

5.1 Introduction

 This unit introduces the Discrete Fourier Transform as a means for obtaining a frequency

based representation of a digital signal. The special characteristics of the Fast Fourier
Transform implementation are described.

 When you have worked through this unit you should:

• be able to explain what information is represented on a magnitude spectrum and on a
phase spectrum of a discrete signal

• be able to state the mathematical expression for the Discrete-time discrete-frequency
Fourier Transform (DFT)

• understand how the direct implementation of the DFT operates
• appreciate that the direct implementation of the DFT is very inefficient, and that the

Fast discrete-time discrete-frequency Fourier Transform (FFT) provides a more
efficient means of its calculation

• have a qualitative understanding of the operation of the decimation-in-time form of
the FFT

• be able to predict how simple sine and cosine signals appear on the DFT in the
region from 0 to Fs.

5.2 Concepts

 A digital signal of finite duration x[1..N] can be specified in the time domain as a

sequence of N scaled impulses occurring at regular sampling instants: each impulse
taking on the amplitude of the signal at that instant. The same signal may also be
described as a combination of N complex sinusoidal components X[0..N-1], each of a
given frequency and phase, and each being a harmonic of the sampling rate/N. This
representation, called a frequency-domain representation, may be obtained from the
time-domain form through the use of the Discrete Fourier Transform or DFT. The time
domain form and the frequency domain form are simply different ways of representing
the same digital signal, one is chosen over the other simply in terms of utility for a given
purpose.

 The Discrete Fourier Transform X(f) of a signal x[1..N] is defined as:

 X[k] =
1

N
 x[n + 1] e-i

2 kn

N

n

N π

=

−

∑
0

1

 where X[k] is the amplitude of the kth harmonic, where k varies from 0 to N-1 and
where k/N represents a fractional frequency value of the sampling rate. In general X[]
and x[] can hold complex values, and X[] will be complex even if x[] is purely real.

 The graph of |X(f)| against frequency is known as the magnitude spectrum. The graph of

arg X(f) against frequency is known as the phase spectrum.

UCL/PALS/BASICDSP/05FOURIER/100103/2

 By copying a real digital signal into a complex sequence x[1..N], the DFT has a

straightforward algorithmic implementation (shown in ComplexDFT()), using
complex multiplication with the complex exponential defined as:

 a+ibe = a (b) + ia (b)cos sin

 and hence:

 -i
2 kn

Ne =
kn

N
i

kn

N
.

π π π
cos() sin()

2 2
+

 We can also define the inverse transform, from the frequency representation X[] back to

the time representation x[]:

 x[n] = X[k] ei
2 (n-1)k

N

k

N π

=

−

∑
0

1

 where n varies from 1 to N. We have chosen to place the scaling factor 1/N in the
forward transform, but many authorities place it in the inverse transform. We choose to
place it here because it leads to harmonic amplitudes which are normalised to the
sequence length, and hence independent of the amount of signal analysed. This leads
naturally to an equivalence between the energy in the signal and the energy in the
spectrum:

 Average Energy =
1

N
x[n] = | X[k]|

n

N
2

k

N
2

1 0

1

= =

−

∑ ∑

 The frequency spectrum is often displayed in log magnitude terms in units of decibels
(dB), and may be converted using:

 A[k] dB = | X[k]| = | X[k]|10
2

10() log () log ()10 20

 From a real signal at a sampling rate Fs, the DFT provides N harmonic amplitudes at

frequencies from 0 to SF
N

N







 −1
. However the frequencies from 0 to Fs/2 are aliased to

the region Fs/2 to Fs, so only the lower N/2 amplitudes are important.

 The phase angles may be converted to degrees using:

 P[k] =
360

2
arg(X[k])

π

 The Fast Fourier Transform or FFT is simply a particular implementation of the DFT,
that gives identical results, but which takes considerably less calculation. It does this by
eliminating a great deal of redundant computation in the DFT in the circumstances when
the sequence length N is a power of 2 (i.e. 4, 8, 16, 32, 64, etc).

 In a normal DFT, each harmonic amplitude is the result of N complex multiplies with N

different complex exponentials - giving a total of N2 multiplies for all N harmonics.
When N is a power of 2, many of these multiplies concern identical numerical
multiplicands and many of the complex exponentials are zero or 1. When redundant

UCL/PALS/BASICDSP/05FOURIER/100103/3

computation is removed, the number of multiplies is Nlog2(N) rather than N2 and this
represents a very large saving when N is large (e.g. for 1024 samples there is 100 times
less calculation).

 At the heart of the FFT is a simple algebraic manipulation that takes two input values,

performs a multiply operation with a complex exponential and produces two output
values. This basic unit is called a 'butterfly', and for two complex inputs a and b, a
frequency W (=2πkn/N), and outputs p and q, the butterfly calculation is

 p = a + be . q = a - be .iW iW− −

 We shall diagram this basic operation as:

 This actually represents the DFT of a 2 sample waveform. Longer waveforms can be

processed by combining these butterfly operations with variations on the value of W.
Thus a DFT of an 8 sample waveform x[0] to x[7] can be graphed as:

 Where Wj is one of the frequencies in the DFT calculation (=2πj/N). This signal flow

graph is the basis of the ComplexFFT() implementation. To operate the graph, the
input signal is shuffled into the spectrum array in an order known as bit-reversed
addressing. Then each column of butterfly operations is performed, so that the signal
'moves' left-to-right through the graph, turning into the DFT spectrum.

UCL/PALS/BASICDSP/05FOURIER/100103/4

Implementation Note

 The FFT routines have not been written for maximum efficiency. Note that the

calculation of the bit-reversed addresses and the values of the complex exponentials need
only be performed once for a given size of transform. Since typical use of the FFT is the
repeated use of the transform on constant lengths of waveform, these tables may be pre-
calculated and stored.

Bibliography

 Meade & Dillon, Signals and Systems, Chapter 7, pp130-144.

 Lynn & Fuerst, Introductory Digital Signal Processing, Chapter 7.

 Orfanidis, Introductory Signal Processing, Chapter 9.

UCL/PALS/BASICDSP/05FOURIER/100103/5

Algorithms

 Algorithm 5.1 Complex to Complex Discrete Fourier Transform

' Computes complex discrete Fourier transform
Public Shared Function ComplexDFT(ByVal x As Comple xWaveform) As Spectrum

 Dim s As New Spectrum(x.Count, x.Rate)

 ' for each output harmonic
 For i As Integer = s.First To s.Last
 ' get frequency
 Dim f As Double = (2 * Math.PI * i) / s.Cou nt
 ' compute complex sum
 Dim sum As New Complex(0)
 For j As Integer = 0 To x.Count
 sum += x(j + 1) * Complex.Exp(New Compl ex(0.0, -f * j))
 Next
 ' scale
 s(i) = sum / x.Count
 Next
 Return s
End Function

' Computes complex inverse discrete Fourier transfo rm
Public Shared Function ComplexIDFT(ByVal s As Spect rum) As ComplexWaveform

 Dim x As New ComplexWaveform(s.Count, s.Rate)

 ' for each output sample
 For i As Integer = 0 To x.Count
 ' get frequency
 Dim f As Double = (2 * Math.PI * i) / x.Cou nt()
 ' compute complex sum
 Dim sum As New Complex(0)
 For j As Integer = 0 To x.Count
 sum += s(j) * Complex.Exp(New Complex(0 .0, f * j))
 Next
 x(i + 1) = sum
 Next
 Return x
End Function

UCL/PALS/BASICDSP/05FOURIER/100103/6

 Algorithm 5.2 Complex Fast Fourier Transform

' integer logarithm base 2
Private Shared Function ILog2(ByVal x As Integer) A s Integer
 Dim p As Integer = 0
 Dim y As Integer = 1
 While (y < x)
 p += 1
 y = 2 * y
 End While
 Return p
End Function

' integer power base 2
Private Shared Function IPow2(ByVal p As Integer) A s Integer
 Dim x As Integer = 1
 While (p > 0)
 p -= 1
 x = 2 * x
 End While
 Return x
End Function

' The FFTBitReverseTable function returns a
' table of indexes for FFT in-place sample shufflin g
Private Shared Sub FFTBitReverseTable(ByVal size As Integer, ByRef idx() As
Integer)

 ' find # bits involved
 Dim nbit As Integer = ILog2(size)

 ' for each table entry
 For i As Integer = 0 To size - 1
 ' store bit reversed index
 Dim a1 As Integer = i
 Dim a2 As Integer = 0
 For j As Integer = 1 To nbit
 a2 *= 2
 If (a1 And 1) Then a2 = a2 Or 1
 a1 \= 2
 Next
 idx(i) = a2

 Next
End Sub

' The FFTButterfly function performs the key FFT cr oss-multiply
Private Shared Sub FFTButterfly(ByRef upper As Comp lex, ByRef lower As Complex,
ByVal w As Complex)
 Dim temp As Complex = lower * w
 lower = upper - temp
 upper = upper + temp
End Sub

' The ComplexFFT function implements a fast complex to
' complex discrete fourier transform
Public Shared Function ComplexFFT(ByRef x As Comple xWaveform) As Spectrum

 Dim size As Integer = IPow2(ILog2(x.Count))
 Dim s As New Spectrum(size, x.Rate)

 ' get bit reverse table
 Dim amap(size) As Integer
 FFTBitReverseTable(size, amap)

 ' shuffle input data into spectrum
 For i As Integer = 0 To size - 1
 s(amap(i)) = x(i + 1) ' uses bad inde x capability of x[] to pad
 Next

 ' do multiple butterfy passes over data

UCL/PALS/BASICDSP/05FOURIER/100103/7

 ' with steps of 1,2,4,..,N
 Dim d As Integer = 1
 While (d < size)
 ' for each start position
 For j As Integer = 0 To d - 1

 Dim w As Complex = Complex.Exp(New Comp lex(0, -(Math.PI * j) / d))
 ' for each step
 Dim i As Integer = j
 While (i < size)
 FFTButterfly(s(i), s(i + d), w)
 i += 2 * d
 End While
 Next
 d *= 2
 End While

 ' normalise
 For i As Integer = 0 To size - 1
 s(i) /= x.Count
 Next
 Return s
End Function

' The ComplexIFFT function implements a fast comple x to
' complex inverse discrete fourier transform
Public Shared Function ComplexIFFT(ByRef s As Spect rum) As ComplexWaveform

 Dim x As New ComplexWaveform(s.Count, s.Rate)

 ' get bit reverse table
 Dim amap(s.Count) As Integer
 FFTBitReverseTable(s.Count, amap)

 ' shuffle input data into waveform
 For i As Integer = 0 To s.Count - 1
 x(i + 1) = s(amap(i))
 Next

 ' do multiple butterfy passes over data
 ' with steps of 1,2,4,..,N
 Dim d As Integer = 1
 While (d < s.Count)

 ' for each start position
 For j As Integer = 0 To d - 1

 Dim w As Complex = Complex.Exp(New Comp lex(0, Math.PI * j / d))
 ' for each step
 Dim i As Integer = j + 1
 While (i <= s.Count)
 FFTButterfly(x(i), x(i + d), w)
 i += 2 * d
 End While
 Next
 d *= 2
 End While

 Return x
End Function

UCL/PALS/BASICDSP/05FOURIER/100103/8

Example Programs

 Example 5.1 Complex Discrete Fourier Transform

Imports BasicDSP
Imports ZedGraph
Public Class TestCDFT
 Const DFTSIZE As Integer = 64

 Private Sub TestCDFT_Load(ByVal sender As Syste m.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 ' create a test signal
 Dim ip As New ComplexWaveform(DFTSIZE, 1)
 For i As Integer = 1 To DFTSIZE
 Dim f As Double = 2 * Math.PI * (i - 1)
 ip(i) = New Complex(1.0 * Math.Sin(2 * f / DFTSIZE) + _
 0.8 * Math.Cos(5 * f / DFTSIZE) + _
 0.6 * Math.Cos(11 * f / DFTSIZE) + _
 0.4 * Math.Sin(14 * f / DFTSIZE), 0)
 Next

 ' generate spectrum
 Dim s As Spectrum = DFT.ComplexDFT(ip)

 ' generate signal again
 Dim op As ComplexWaveform = DFT.ComplexIDFT (s)

 ' plot as graphs
 Dim gp As New Graph(Me.CreateGraphics, zgc, 3, 2, "Complex DFT")

 gp.PlotComplexWaveform(1, ip, "Input Signal ")
 gp.PlotComplexWaveform(2, op, "Output Signa l")
 gp.PlotSpectrumReal(3, s, "Real Spectrum")
 gp.PlotSpectrumImag(4, s, "Imaginary Spectr um")
 gp.PlotSpectrumMag(5, s, "Magnitude Spectru m")
 gp.PlotSpectrumArg(6, s, "Phase Spectrum")

 End Sub
End Class

UCL/PALS/BASICDSP/05FOURIER/100103/9

 Example 5.2 Complex Fast Fourier Transform

Imports BasicDSP
Imports ZedGraph
Public Class TestCDFT
 Const DFTSIZE As Integer = 64

 Private Sub TestCDFT_Load(ByVal sender As Syste m.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 ' create a test signal
 Dim ip As New ComplexWaveform(DFTSIZE, 1)
 For i As Integer = 1 To DFTSIZE
 Dim f As Double = 2 * Math.PI * (i - 1)
 ip(i) = New Complex(1.0 * Math.Sin(2 * f / DFTSIZE) + _
 0.8 * Math.Cos(5 * f / DFTSIZE) + _
 0.6 * Math.Cos(11 * f / DFTSIZE) + _
 0.4 * Math.Sin(14 * f / DFTSIZE), 0)
 Next

 ' generate spectrum
 Dim s As Spectrum = DFT.ComplexFFT(ip)

 ' generate signal again
 Dim op As ComplexWaveform = DFT.ComplexIFFT (s)

 ' plot as graphs
 Dim gp As New Graph(Me.CreateGraphics, zgc, 3, 2, "Fast Complex DFT")

 gp.PlotComplexWaveform(1, ip, "Input Signal ")
 gp.PlotComplexWaveform(2, op, "Output Signa l")
 gp.PlotSpectrumReal(3, s, "Real Spectrum")
 gp.PlotSpectrumImag(4, s, "Imaginary Spectr um")
 gp.PlotSpectrumMag(5, s, "Magnitude Spectru m")
 gp.PlotSpectrumArg(6, s, "Phase Spectrum")

 End Sub
End Class

UCL/PALS/BASICDSP/05FOURIER/100103/10

Exercises

5.1 The inverse DFT provides a simpler method to synthesize a square wave: set up the

spectrum of a square wave and call ComplexIDFT() . Set up a spectrum as follows:

 Spectrum(1000,0.05); // 0..19,980Hz in 1000 steps

 Then put in the odd harmonics of 100Hz with appropriate amplitudes (amplitude of nth

harmonic is just 1/n). That is, put in amplitudes of 1.0 at spectrum position 5, 0.33 at
position 15, 0.2 at position 25, etc. Don’t forget to put in the mirror images at positions
995, 985, 975, etc. Plot your spectrum and the result of the inverse DFT.

 How would you change your solution to use an FFT? Why might you want to?

5.2 Modify Examples 5.1 and 5.2 to explore the differences between an exact DFT of a 40

point test waveform and the FFT of the same waveform suffixed with 24 zeros. Plot a
graph showing the magnitude spectrum and the phase spectrum of the same signal
analysed in these two ways.

 What differences are there between an FFT of a 64 point waveform and an FFT of the
same waveform appended with 64 zeros?

