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UNIT 5: 
DISCRETE FOURIER 
TRANSFORM 

 
 
5.1 Introduction 
 
 This unit introduces the Discrete Fourier Transform as a means for obtaining a frequency 

based representation of a digital signal.  The special characteristics of the Fast Fourier 
Transform implementation are described. 

 
 When you have worked through this unit you should: 

• be able to explain what information is represented on a magnitude spectrum and on a 
phase spectrum of a discrete signal 

• be able to state the mathematical expression for the Discrete-time discrete-frequency 
Fourier Transform (DFT) 

• understand how the direct implementation of the DFT operates 
• appreciate that the direct implementation of the DFT is very inefficient, and that the 

Fast discrete-time discrete-frequency Fourier Transform (FFT) provides a more 
efficient means of its calculation 

• have a qualitative understanding of the operation of the decimation-in-time form of 
the FFT 

• be able to predict how simple sine and cosine signals appear on the DFT in the 
region from 0 to Fs. 

 
5.2 Concepts 
 
 A digital signal of finite duration x[1..N] can be specified in the time domain as a 

sequence of N scaled impulses occurring at regular sampling instants: each impulse 
taking on the amplitude of the signal at that instant.  The same signal may also be 
described as a combination of N complex sinusoidal components X[0..N-1], each of a 
given frequency and phase, and each being a harmonic of the sampling rate/N.  This 
representation, called a frequency-domain representation, may be obtained from the 
time-domain form through the use of the Discrete Fourier Transform or DFT.  The time 
domain form and the frequency domain form are simply different ways of representing 
the same digital signal, one is chosen over the other simply in terms of utility for a given 
purpose. 

 
 The Discrete Fourier Transform X(f) of a signal x[1..N] is defined as: 
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 where X[k] is the amplitude of the kth harmonic, where k varies from 0 to N-1 and 
where k/N represents a fractional frequency value of the sampling rate.  In general X[] 
and x[] can hold complex values, and X[] will be complex even if x[] is purely real. 

 
 The graph of |X(f)| against frequency is known as the magnitude spectrum.  The graph of 

arg X(f) against frequency is known as the phase spectrum. 
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 By copying a real digital signal into a complex sequence x[1..N], the DFT has a 

straightforward algorithmic implementation (shown in ComplexDFT() ), using 
complex multiplication with the complex exponential defined as: 
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 We can also define the inverse transform, from the frequency representation X[] back to 

the time representation x[]: 
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 where n varies from 1 to N.  We have chosen to place the scaling factor 1/N in the 
forward transform, but many authorities place it in the inverse transform.  We choose to 
place it here because it leads to harmonic amplitudes which are normalised to the 
sequence length, and hence independent of the amount of signal analysed.  This leads 
naturally to an equivalence between the energy in the signal and the energy in the 
spectrum: 
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 The frequency spectrum is often displayed in log magnitude terms in units of decibels 
(dB), and may be converted using: 

 A[k] dB  =  | X[k]|  =  | X[k]|10
2

10( ) log ( ) log ( )10 20  

 From a real signal at a sampling rate Fs, the DFT provides N harmonic amplitudes at 

frequencies from 0 to SF
N

N







 −1
.  However the frequencies from 0 to Fs/2 are aliased to 

the region Fs/2 to Fs, so only the lower N/2 amplitudes are important. 
 
 The phase angles may be converted to degrees using: 
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 The Fast Fourier Transform or FFT is simply a particular implementation of the DFT, 
that gives identical results, but which takes considerably less calculation.  It does this by 
eliminating a great deal of redundant computation in the DFT in the circumstances when 
the sequence length N is a power of 2 (i.e. 4, 8, 16, 32, 64, etc). 

 
 In a normal DFT, each harmonic amplitude is the result of N complex multiplies with N 

different complex exponentials - giving a total of N2 multiplies for all N harmonics.  
When N is a power of 2, many of these multiplies concern identical numerical 
multiplicands and many of the complex exponentials are zero or 1.  When redundant 
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computation is removed, the number of multiplies is Nlog2(N) rather than N2 and this 
represents a very large saving when N is large (e.g. for 1024 samples there is 100 times 
less calculation). 

 
 At the heart of the FFT is a simple algebraic manipulation that takes two input values, 

performs a multiply operation with a complex exponential and produces two output 
values.  This basic unit is called a 'butterfly', and for two complex inputs a and b, a 
frequency W (=2πkn/N), and outputs p and q, the butterfly calculation is 

 p =  a + be .   q =  a - be .iW iW− −  

 We shall diagram this basic operation as: 
 

 
 
 This actually represents the DFT of a 2 sample waveform.  Longer waveforms can be 

processed by combining these butterfly operations with variations on the value of W.  
Thus a DFT of an 8 sample waveform x[0] to x[7] can be graphed as: 

 

 
 Where Wj is one of the frequencies in the DFT calculation (=2πj/N). This signal flow 

graph is the basis of the ComplexFFT()  implementation.  To operate the graph, the 
input signal is shuffled into the spectrum array in an order known as bit-reversed 
addressing.  Then each column of butterfly operations is performed, so that the signal 
'moves' left-to-right through the graph, turning into the DFT spectrum. 
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Implementation Note 
 
 The FFT routines have not been written for maximum efficiency.  Note that the 

calculation of the bit-reversed addresses and the values of the complex exponentials need 
only be performed once for a given size of transform.  Since typical use of the FFT is the 
repeated use of the transform on constant lengths of waveform,  these tables may be pre-
calculated and stored. 
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Algorithms 
 
 Algorithm 5.1 Complex to Complex Discrete Fourier Transform 
 

' Computes complex discrete Fourier transform 
Public Shared Function ComplexDFT(ByVal x As Comple xWaveform) As Spectrum 
 
    Dim s As New Spectrum(x.Count, x.Rate) 
 
    ' for each output harmonic 
    For i As Integer = s.First To s.Last 
        ' get frequency 
        Dim f As Double = (2 * Math.PI * i) / s.Cou nt 
        ' compute complex sum 
        Dim sum As New Complex(0) 
        For j As Integer = 0 To x.Count 
            sum += x(j + 1) * Complex.Exp(New Compl ex(0.0, -f * j)) 
        Next 
        ' scale 
        s(i) = sum / x.Count 
    Next 
    Return s 
End Function 
 
' Computes complex inverse discrete Fourier transfo rm 
Public Shared Function ComplexIDFT(ByVal s As Spect rum) As ComplexWaveform 
 
    Dim x As New ComplexWaveform(s.Count, s.Rate) 
 
    ' for each output sample 
    For i As Integer = 0 To x.Count 
        ' get frequency 
        Dim f As Double = (2 * Math.PI * i) / x.Cou nt() 
        ' compute complex sum 
        Dim sum As New Complex(0) 
        For j As Integer = 0 To x.Count 
            sum += s(j) * Complex.Exp(New Complex(0 .0, f * j)) 
        Next 
        x(i + 1) = sum 
    Next 
    Return x 
End Function 
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 Algorithm 5.2 Complex Fast Fourier Transform 
 

' integer logarithm base 2 
Private Shared Function ILog2(ByVal x As Integer) A s Integer 
    Dim p As Integer = 0 
    Dim y As Integer = 1 
    While (y < x) 
        p += 1 
        y = 2 * y 
    End While 
    Return p 
End Function 
 
' integer power base 2 
Private Shared Function IPow2(ByVal p As Integer) A s Integer 
    Dim x As Integer = 1 
    While (p > 0) 
        p -= 1 
        x = 2 * x 
    End While 
    Return x 
End Function 
 
' The FFTBitReverseTable function returns a  
' table of indexes for FFT in-place sample shufflin g 
Private Shared Sub FFTBitReverseTable(ByVal size As  Integer, ByRef idx() As 
Integer) 
 
    ' find # bits involved 
    Dim nbit As Integer = ILog2(size) 
 
    ' for each table entry 
    For i As Integer = 0 To size - 1 
        ' store bit reversed index 
        Dim a1 As Integer = i 
        Dim a2 As Integer = 0 
        For j As Integer = 1 To nbit 
            a2 *= 2 
            If (a1 And 1) Then a2 = a2 Or 1 
            a1 \= 2 
        Next 
        idx(i) = a2 
 
    Next 
End Sub 
 
' The FFTButterfly function performs the key FFT cr oss-multiply 
Private Shared Sub FFTButterfly(ByRef upper As Comp lex, ByRef lower As Complex, 
ByVal w As Complex) 
    Dim temp As Complex = lower * w 
    lower = upper - temp 
    upper = upper + temp 
End Sub 
 
' The ComplexFFT function implements a fast complex  to 
' complex discrete fourier transform 
Public Shared Function ComplexFFT(ByRef x As Comple xWaveform) As Spectrum 
 
    Dim size As Integer = IPow2(ILog2(x.Count)) 
    Dim s As New Spectrum(size, x.Rate) 
 
    ' get bit reverse table 
    Dim amap(size) As Integer 
    FFTBitReverseTable(size, amap) 
 
    ' shuffle input data into spectrum 
    For i As Integer = 0 To size - 1 
        s(amap(i)) = x(i + 1)       ' uses bad inde x capability of x[] to pad 
    Next 
 
    ' do multiple butterfy passes over data 
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    ' with steps of 1,2,4,..,N 
    Dim d As Integer = 1 
    While (d < size) 
        ' for each start position 
        For j As Integer = 0 To d - 1 
 
            Dim w As Complex = Complex.Exp(New Comp lex(0, -(Math.PI * j) / d)) 
            ' for each step 
            Dim i As Integer = j 
            While (i < size) 
                FFTButterfly(s(i), s(i + d), w) 
                i += 2 * d 
            End While 
        Next 
        d *= 2 
    End While 
 
    ' normalise 
    For i As Integer = 0 To size - 1 
        s(i) /= x.Count 
    Next 
    Return s 
End Function 
 
' The ComplexIFFT function implements a fast comple x to 
' complex inverse discrete fourier transform 
Public Shared Function ComplexIFFT(ByRef s As Spect rum) As ComplexWaveform 
 
    Dim x As New ComplexWaveform(s.Count, s.Rate) 
 
    ' get bit reverse table 
    Dim amap(s.Count) As Integer 
    FFTBitReverseTable(s.Count, amap) 
 
    ' shuffle input data into waveform 
    For i As Integer = 0 To s.Count - 1 
        x(i + 1) = s(amap(i)) 
    Next 
 
    ' do multiple butterfy passes over data 
    ' with steps of 1,2,4,..,N 
    Dim d As Integer = 1 
    While (d < s.Count) 
 
        ' for each start position 
        For j As Integer = 0 To d - 1 
 
            Dim w As Complex = Complex.Exp(New Comp lex(0, Math.PI * j / d)) 
            ' for each step 
            Dim i As Integer = j + 1 
            While (i <= s.Count) 
                FFTButterfly(x(i), x(i + d), w) 
                i += 2 * d 
            End While 
        Next 
        d *= 2 
    End While 
 
    Return x 
End Function 
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Example Programs 
 
 Example 5.1 Complex Discrete Fourier Transform 
 

Imports BasicDSP 
Imports ZedGraph 
Public Class TestCDFT 
    Const DFTSIZE As Integer = 64 
 
    Private Sub TestCDFT_Load(ByVal sender As Syste m.Object, ByVal e As 
System.EventArgs) Handles MyBase.Load 
 
        ' create a test signal 
        Dim ip As New ComplexWaveform(DFTSIZE, 1) 
        For i As Integer = 1 To DFTSIZE 
            Dim f As Double = 2 * Math.PI * (i - 1)  
            ip(i) = New Complex(1.0 * Math.Sin(2 * f / DFTSIZE) + _ 
                0.8 * Math.Cos(5 * f / DFTSIZE) + _  
                0.6 * Math.Cos(11 * f / DFTSIZE) + _ 
                0.4 * Math.Sin(14 * f / DFTSIZE), 0 ) 
        Next 
 
        ' generate spectrum 
        Dim s As Spectrum = DFT.ComplexDFT(ip) 
 
        ' generate signal again 
        Dim op As ComplexWaveform = DFT.ComplexIDFT (s) 
 
        ' plot as graphs 
        Dim gp As New Graph(Me.CreateGraphics, zgc,  3, 2, "Complex DFT") 
 
        gp.PlotComplexWaveform(1, ip, "Input Signal ") 
        gp.PlotComplexWaveform(2, op, "Output Signa l") 
        gp.PlotSpectrumReal(3, s, "Real Spectrum") 
        gp.PlotSpectrumImag(4, s, "Imaginary Spectr um") 
        gp.PlotSpectrumMag(5, s, "Magnitude Spectru m") 
        gp.PlotSpectrumArg(6, s, "Phase Spectrum") 
 
    End Sub 
End Class 
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 Example 5.2 Complex Fast Fourier Transform 
 

Imports BasicDSP 
Imports ZedGraph 
Public Class TestCDFT 
    Const DFTSIZE As Integer = 64 
 
    Private Sub TestCDFT_Load(ByVal sender As Syste m.Object, ByVal e As 
System.EventArgs) Handles MyBase.Load 
 
        ' create a test signal 
        Dim ip As New ComplexWaveform(DFTSIZE, 1) 
        For i As Integer = 1 To DFTSIZE 
            Dim f As Double = 2 * Math.PI * (i - 1)  
            ip(i) = New Complex(1.0 * Math.Sin(2 * f / DFTSIZE) + _ 
                0.8 * Math.Cos(5 * f / DFTSIZE) + _  
                0.6 * Math.Cos(11 * f / DFTSIZE) + _ 
                0.4 * Math.Sin(14 * f / DFTSIZE), 0 ) 
        Next 
 
        ' generate spectrum 
        Dim s As Spectrum = DFT.ComplexFFT(ip) 
 
        ' generate signal again 
        Dim op As ComplexWaveform = DFT.ComplexIFFT (s) 
 
        ' plot as graphs 
        Dim gp As New Graph(Me.CreateGraphics, zgc,  3, 2, "Fast Complex DFT") 
 
        gp.PlotComplexWaveform(1, ip, "Input Signal ") 
        gp.PlotComplexWaveform(2, op, "Output Signa l") 
        gp.PlotSpectrumReal(3, s, "Real Spectrum") 
        gp.PlotSpectrumImag(4, s, "Imaginary Spectr um") 
        gp.PlotSpectrumMag(5, s, "Magnitude Spectru m") 
        gp.PlotSpectrumArg(6, s, "Phase Spectrum") 
 
    End Sub 
End Class 
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Exercises 
 
5.1 The inverse DFT provides a simpler method to synthesize a square wave: set up the 

spectrum of a square wave and call ComplexIDFT() .  Set up a spectrum as follows: 
 
  Spectrum(1000,0.05);  // 0..19,980Hz in 1000 steps 
 
 Then put in the odd harmonics of 100Hz with appropriate amplitudes (amplitude of nth 

harmonic is just 1/n).  That is, put in amplitudes of 1.0 at spectrum position 5, 0.33 at 
position 15, 0.2 at position 25, etc.  Don’t forget to put in the mirror images at positions 
995, 985, 975, etc.  Plot your spectrum and the result of the inverse DFT. 

 
 How would you change your solution to use an FFT?  Why might you want to? 
 
5.2 Modify Examples 5.1 and 5.2 to explore the differences between an exact DFT of a 40 

point test waveform and the FFT of the same waveform suffixed with 24 zeros.  Plot a 
graph showing the magnitude spectrum and the phase spectrum of the same signal 
analysed in these two ways. 

 
 What differences are there between an FFT of a 64 point waveform and an FFT of the 
same waveform appended with 64 zeros? 


